Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Chem Biol Drug Des ; 103(4): e14519, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38570708

RESUMO

Kaempferol (KPR), a flavonoid compound found in various plants and foods, has garnered attention for its anti-inflammatory, antioxidant, and anticancer properties. In preliminary studies, KPR can modulate several signaling pathways involved in inflammation, making it a candidate for treating cholecystitis. This study aimed to explore the effects and mechanisms of KPR on lipopolysaccharide (LPS)-induced human gallbladder epithelial cells (HGBECs). To assess the impact of KPR on HGBECs, the HGBECs were divided into control, KPR, LPS, LPS + KPR, and LPS + UDCA groups. Cell viability and cytotoxicity were evaluated by MTT assay and lactate dehydrogenase (LDH) assay, respectively, and concentrations of KPR (10-200 µM) were tested. LPS-induced inflammatory responses in HGBECs were to create an in vitro model of cholecystitis. The key inflammatory markers (IL-1ß, IL-6, and TNF-α) levels were quantified using ELISA, The modulation of the MAPK/NF-κB signaling pathway was measured by western blot using specific antibodies against pathway components (p-IκBα, IκBα, p-p65, p65, p-JNK, JNK, p-ERK, ERK, p-p38, and p38). The cell viability and LDH levels in HGBECs were not significantly affected by 50 µM KPR, thus it was selected as the optimal KPR intervention concentration. KPR increased the viability of LPS-induced HGBECs. Additionally, KPR inhibited the inflammatory factors level (IL-1ß, IL-6, and TNF-α) and protein expression (iNOS and COX-2) in LPS-induced HGBECs. Furthermore, KPR reversed LPS-induced elevation of p-IκBα/IκBα, p-p65/p65, p-JNK/JNK, p-ERK/ERK, and p-p38/p38 ratios. KPR attenuates the LPS-induced inflammatory response in HGBECs, possibly by inhibiting MAPK/NF-κB signaling.


Assuntos
Colecistite , NF-kappa B , Humanos , NF-kappa B/metabolismo , Lipopolissacarídeos/toxicidade , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Quempferóis/farmacologia , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Células Epiteliais/metabolismo , Sistema de Sinalização das MAP Quinases
2.
Iran J Kidney Dis ; 18(2): 87-98, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38660700

RESUMO

INTRODUCTION: One of the most significant clinical features of chronic  kidney disease is renal interstitial fibrosis (RIF). This study aimed  to investigate the role and mechanism of Shenqi Pill (SQP) on RIF. METHODS: RIF model was established by conducting unilateral  ureteral obstruction (UUO) surgery on rat or stimulating human  kidney-2 (HK-2) cell with transforming growth factor ß1 (TGFß1).  After modeling, the rats in the SQP low dose group (SQP-L), SQP  middle dose group (SQP-M) and SQP high dose group (SQP-H)  were treated with SQP at 1.5, 3 or 6 g/kg/d, and the cells in the  TGFß1+SQP-L/M/H were treated with 2.5%, 5%, 10% SQP-containing  serum. In in vivo assays, serum creatinine (SCr) and blood urea  nitrogen (BUN) content were measured, kidney histopathology  was evaluated., and α-smooth muscle actin (α-SMA) expression  was detected by immunohistochemistry. Interleukin-1ß (IL-1ß),  interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) content,  inhibitor of kappa B alpha (IKBα) and P65 phosphorylation were  assessed. Meanwhile, cell viability, inflammatory cytokines content,  α-SMA expression, IKBα and P65 phosphorylation were detected  in vitro experiment.  Results. SQP exhibited reno-protective effect by decreasing SCr  and BUN content, improving renal interstitial damage, blunting  fibronectin (FN) and α-SMA expression in RIF rats. Similarly, after  the treatment with SQP-containing serum, viability and α-SMA  expression were remarkably decreased in TGFß1-stimulated HK-2  cell. Furthermore, SQP markedly down-regulated IL-1ß, IL-6, and  TNF-α content, IKBα and RelA (P65) phosphorylation both in vivo and in vitro.  Conclusion. SQP has a reno-protective effect against RIF in vivo and in vitro, and the effect is partly linked to nuclear factor-kappa  B (NF-κB) pathway related inflammatory response, which indicates  that SQP may be a candidate drug for RIF. DOI: 10.52547/ijkd.7546.


Assuntos
Modelos Animais de Doenças , Medicamentos de Ervas Chinesas , Fibrose , Rim , NF-kappa B , Transdução de Sinais , Animais , Medicamentos de Ervas Chinesas/farmacologia , Masculino , Humanos , NF-kappa B/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular , Ratos Sprague-Dawley , Ratos , Actinas/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Obstrução Ureteral/patologia , Obstrução Ureteral/complicações , Obstrução Ureteral/tratamento farmacológico , Nitrogênio da Ureia Sanguínea , Creatinina/sangue , Inibidor de NF-kappaB alfa/metabolismo , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Insuficiência Renal Crônica/tratamento farmacológico , Citocinas/metabolismo
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542434

RESUMO

Aucubin, an iridoid glycoside, possesses beneficial bioactivities in many diseases, but little is known about its neuroprotective effects and mechanisms in brain ischemia and reperfusion (IR) injury. This study evaluated whether aucubin exhibited neuroprotective effects against IR injury in the hippocampal CA1 region through anti-inflammatory activity in gerbils. Aucubin (10 mg/kg) was administered intraperitoneally once a day for one week prior to IR. Neuroprotective effects of aucubin were assessed by neuronal nuclei (NeuN) immunofluorescence and Floro-Jade C (FJC) histofluorescence. Microgliosis and astrogliosis were evaluated using immunohistochemistry with anti-ionized calcium binding adapter protein 1 (Iba1) and glial fibrillary acidic protein (GFAP). Protein levels of proinflammatory cytokines interleukin1 beta (IL1ß) and tumor necrosis factor alpha (TNFα) were assayed using enzyme-linked immunosorbent assay and Western blot. Changes in toll-like receptor 4 (TLR4)/nuclear factor-κB (NF-κB) signaling pathway were assessed by measuring levels of TLR4, inhibitor of NF-κB alpha (IκBα), and NF-κB p65 using Western blot. Aucubin treatment protected pyramidal neurons from IR injury. IR-induced microgliosis and astrogliosis were suppressed by aucubin treatment. IR-induced increases in IL1ß and TNFα levels were significantly alleviated by the treatment. IR-induced upregulation of TLR4 and downregulation of IκBα were significantly prevented by aucubin treatment, and IR-induced nuclear translocation of NF-κB was reversed by aucubin treatment. Briefly, aucubin exhibited neuroprotective effects against brain IR injury, which might be related to the attenuation of neuroinflammation through inhibiting the TLR-4/NF-κB signaling pathway. These results suggest that aucubin pretreatment may be a potential approach for the protection of brain IR injury.


Assuntos
Isquemia Encefálica , Glucosídeos Iridoides , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Animais , NF-kappa B/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Gerbillinae/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Receptor 4 Toll-Like/metabolismo , Gliose , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/metabolismo , Isquemia , Infarto Cerebral , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo
4.
FASEB J ; 38(5): e23512, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38430220

RESUMO

The robust integrity of the retinal pigment epithelium (RPE), which contributes to the outer brain retina barrier (oBRB), is compromised in several retinal degenerative and vascular disorders, including diabetic macular edema (DME). This study evaluates the role of a new generation of histone deacetylase inhibitor (HDACi), ITF2357, in regulating outer blood-retinal barrier function and investigates the underlying mechanism of action in inhibiting TNFα-induced damage to RPE integrity. Using the immortalized RPE cell line (ARPE-19), ITF2357 was found to be non-toxic between 50 nM and 5 µM concentrations. When applied as a pre-treatment in conjunction with an inflammatory cytokine, TNFα, the HDACi was safe and effective in preventing epithelial permeability by fortifying tight junction (ZO-1, -2, -3, occludin, claudin-1, -2, -3, -5, -19) and adherens junction (E-cadherin, Nectin-1) protein expression post-TNFα stress. Mechanistically, ITF2357 depicted a late action at 24 h via attenuating IKK, IκBα, and p65 phosphorylation and ameliorated the expression of IL-1ß, IL-6, and MCP-1. Also, ITF2357 delayed IκBα synthesis and turnover. The use of Bay 11-7082 and MG132 further uncovered a possible role for ITF2357 in non-canonical NF-κB activation. Overall, this study revealed the protection effects of ITF2357 by regulating the turnover of tight and adherens junction proteins and modulating NF-κB signaling pathway in the presence of an inflammatory stressor, making it a potential therapeutic application for retinal vascular diseases such as DME with compromised outer blood-retinal barrier.


Assuntos
Retinopatia Diabética , Ácidos Hidroxâmicos , Edema Macular , Humanos , NF-kappa B/metabolismo , Retinopatia Diabética/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Edema Macular/metabolismo , Transdução de Sinais , Epitélio Pigmentado da Retina/metabolismo , Barreira Hematorretiniana/metabolismo , Junções Íntimas/metabolismo , Células Epiteliais/metabolismo , Pigmentos da Retina/metabolismo , Pigmentos da Retina/farmacologia , Pigmentos da Retina/uso terapêutico
5.
Int J Mol Sci ; 25(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474077

RESUMO

Boldenone (Bdn) and nandrolone (Ndn) are anabolic androgenic steroids (AASs) that, as our previous studies have shown, may increase the risk of neoplastic transformation of porcine ovarian putative stem cells (poPSCs). The NF-κB pathway may be important in the processes of carcinogenesis and tumour progression. Therefore, in this work, we decided to test the hypothesis of whether Bdn and Ndn can activate the NF-κB pathway by acting through the membrane androgen receptor ZIP-9. For this purpose, the expression profiles of both genes involved in the NF-κB pathway and the gene coding for the ZIP-9 receptor were checked. The expression and localization of proteins of this pathway in poPSCs were also examined. Additionally, the expression of the ZIP-9 receptor and the concentration of the NF-κB1 and 2 protein complex were determined. Activation of the NF-κB pathway was primarily confirmed by an increase in the relative abundances of phosphorylated forms of RelA protein and IκBα inhibitor. Reduced quantitative profiles pinpointed not only for genes representing this pathway but also for unphosphorylated proteins, and, simultaneously, decreased concentration of the NF-κB1 and 2 complex may indicate post-activation silencing by negative feedback. However, the remarkably and sustainably diminished expression levels noticed for the SLC39A9 gene and ZIP-9 protein suggest that this receptor does not play an important role in the regulation of the NF-κB pathway.


Assuntos
Esteróides Androgênicos Anabolizantes , NF-kappa B , Suínos , Animais , NF-kappa B/metabolismo , Fator de Transcrição RelA/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fosforilação
6.
Epilepsy Res ; 201: 107321, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382229

RESUMO

Epilepsy represents a prevalent neurological disorder in the population, and the existing antiepileptic drugs (AEDs) often fail to adequately control seizures. Inflammation is recognized as a pivotal factor in the pathophysiology of epilepsy. Luteolin, a natural flavonoid extract, possesses anti-inflammatory properties and exhibits promising neuroprotective activity. Nevertheless, the precise molecular mechanisms underlying the antiepileptic effects of luteolin remain elusive. In this study, we established a rat model of epilepsy using pentylenetetrazole (PTZ) to induce seizures. A series of behavioral experiments were conducted to assess behavioral abilities and cognitive function. Histological techniques, including HE staining, Nissl staining, and TUNEL staining, were employed to assess hippocampal neuronal damage. Additionally, Western blotting, RT-qPCR, and ELISA were utilized to analyze the expression levels of proteins involved in the TLR4/IκBα/NF-κB signaling pathway, transcription levels of apoptotic factors, and levels of inflammatory cytokines, respectively. Luteolin exhibited a dose-dependent reduction in seizure severity, prolonged the latency period of seizures, and shortened seizure duration. Furthermore, luteolin prevented hippocampal neuronal damage in PTZ-induced epileptic rats and partially restored behavioral function and learning and memory abilities. Lastly, PTZ kindling activated the TLR4/IκBα/NF-κB pathway, leading to elevated levels of the cytokines TNF-α, IL-6 and IL-1ß, which were attenuated by luteolin. Luteolin exerted anticonvulsant and neuroprotective activities in the PTZ-induced epileptic model. Its mechanism was associated with the inhibition of the TLR4/IκBα/NF-κB pathway, alleviating the immune-inflammatory response in the post-epileptic hippocampus.


Assuntos
Epilepsia , Pentilenotetrazol , Ratos , Animais , Pentilenotetrazol/toxicidade , NF-kappa B/metabolismo , NF-kappa B/farmacologia , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Inibidor de NF-kappaB alfa/uso terapêutico , Receptor 4 Toll-Like , Luteolina/efeitos adversos , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico , Transdução de Sinais , Epilepsia/tratamento farmacológico , Anticonvulsivantes/efeitos adversos , Citocinas/metabolismo
7.
PLoS One ; 19(2): e0295837, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38335214

RESUMO

Poly-(ADP-ribose) polymerases (PARPs) are a protein family that make ADP-ribose modifications on target genes and proteins. PARP family members contribute to the pathogenesis of chronic inflammatory diseases, including atherosclerosis, in which monocytes/macrophages play important roles. PARP inhibition is protective against atherosclerosis. However, the mechanisms by which PARP inhibition exerts this beneficial effect are not well understood. Here we show that in THP-1 monocytes, inhibition of PARP by olaparib attenuated oxidized low-density lipoprotein (oxLDL)-induced protein expressions of nucleotide-binding oligomerization domain, leucine-rich repeat and pyrin domain-containing-3 (NLRP3) inflammasome components: NLRP3, apoptosis-associated speck-like protein containing a caspase activation and recruitment domain (ASC), and caspase-1. Consistent with this effect, olaparib decreased oxLDL-enhanced interleukin (IL)-1ß and IL-18 protein expression. Olaparib also decreased the oxLDL-mediated increase in mitochondrial reactive oxygen species. Similar to the effects of the NLRP3 inhibitor, MCC950, olaparib attenuated oxLDL-induced adhesion of monocytes to cultured human umbilical vein endothelial cells and reduced foam cell formation. Furthermore, olaparib attenuated the oxLDL-mediated activation of nuclear factor (NF)-κB through the oxLDL-mediated increase in IκBα phosphorylation and assembly of NF-κB subunits, demonstrated by co-immunoprecipitation of IκBα with RelA/p50 and RelB/p52 subunits. Moreover, PARP inhibition decreased oxLDL-mediated protein expression of a NF-κB target gene, VCAM1, encoding vascular cell adhesion molecule-1. This finding indicates an important role for NF-κB activity in PARP-mediated activation of the NLRP3 inflammasome. Thus, PARP inhibition by olaparib attenuates NF-κB and NLRP3 inflammasome activities, lessening monocyte cell adhesion and macrophage foam cell formation. These inhibitory effects of olaparib on NLRP3 activity potentially protect against atherosclerosis.


Assuntos
Aterosclerose , Inflamassomos , Ftalazinas , Piperazinas , Humanos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Monócitos/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Poli(ADP-Ribose) Polimerases/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Células Endoteliais/metabolismo , Adenosina Difosfato Ribose/metabolismo , Aterosclerose/metabolismo , Interleucina-1beta/metabolismo
8.
Cells ; 13(3)2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38334675

RESUMO

Cathepsin B (CatB) is thought to be essential for the induction of Porphyromonas gingivalis lipopolysaccharide (Pg LPS)-induced Alzheimer's disease-like pathologies in mice, including interleukin-1ß (IL-1ß) production and cognitive decline. However, little is known about the role of CatB in Pg virulence factor-induced IL-1ß production by microglia. We first subjected IL-1ß-luciferase reporter BV-2 microglia to inhibitors of Toll-like receptors (TLRs), IκB kinase, and the NLRP3 inflammasome following stimulation with Pg LPS and outer membrane vesicles (OMVs). To clarify the involvement of CatB, we used several known CatB inhibitors, including CA-074Me, ZRLR, and human ß-defensin 3 (hBD3). IL-1ß production in BV-2 microglia induced by Pg LPS and OMVs was significantly inhibited by the TLR2 inhibitor C29 and the IκB kinase inhibitor wedelolactonne, but not by the NLRPs inhibitor MCC950. Both hBD3 and CA-074Me significantly inhibited Pg LPS-induced IL-1ß production in BV-2 microglia. Although CA-074Me also suppressed OMV-induced IL-1ß production, hBD3 did not inhibit it. Furthermore, both hBD3 and CA-074Me significantly blocked Pg LPS-induced nuclear NF-κB p65 translocation and IκBα degradation. In contrast, hBD3 and CA-074Me did not block OMV-induced nuclear NF-κB p65 translocation or IκBα degradation. Furthermore, neither ZRLR, a specific CatB inhibitor, nor shRNA-mediated knockdown of CatB expression had any effect on Pg virulence factor-induced IL-1ß production. Interestingly, phagocytosis of OMVs by BV-2 microglia induced IL-1ß production. Finally, the structural models generated by AlphaFold indicated that hBD3 can bind to the substrate-binding pocket of CatB, and possibly CatL as well. These results suggest that Pg LPS induces CatB/CatL-dependent synthesis and processing of pro-IL-1ß without activation of the NLRP3 inflammasome. In contrast, OMVs promote the synthesis and processing of pro-IL-1ß through CatB/CatL-independent phagocytic mechanisms. Thus, hBD3 can improve the IL-1ß-associated vicious inflammatory cycle induced by microglia through inhibition of CatB/CatL.


Assuntos
Microglia , beta-Defensinas , Humanos , beta-Defensinas/metabolismo , Catepsina B/metabolismo , Quinase I-kappa B/metabolismo , Inflamassomos/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos , Microglia/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Virulência/metabolismo
9.
Biochem Biophys Res Commun ; 703: 149666, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38377944

RESUMO

The IL-6 amplifier was originally discovered as a mechanism for the enhanced activation of NF-κB in non-immune cells. In the IL-6 amplifier, IL-6-STAT3 and NF-κB stimulation is followed by an excessive production of IL-6, chemokines, and growth factors to develop chronic inflammation preceding the development of inflammatory diseases. Previously, using a shRNA-mediated genome-wide screening, we found that DEAD-Box Helicase 6 (DDX6) is a candidate positive regulator of the amplifier. Here, we investigate whether DDX6 is involved in the pathogenesis of inflammatory diseases via the IL-6 amplifier. We found that DDX6-silencing in non-immune cells suppressed the NF-κB pathway and inhibited activation of the IL-6 amplifier, while the forced expression of DDX6 enhanced NF-κB promoter activity independent of the RNA helicase activity of DDX6. The imiquimod-mediated dermatitis model was suppressed by the siRNA-mediated gene downregulation of DDX6. Furthermore, silencing DDX6 significantly reduced the TNF-α-induced phosphorylation of p65/RelA and IκBα, nuclear localization of p65, and the protein levels of IκBα. Mechanistically, DDX6 is strongly associated with p65 and IκBα, but not TRADD, RIP, or TRAF2, suggesting a novel function of DDX6 as an adaptor protein in the NF-κB pathway. Thus, our findings demonstrate a possible role of DDX6 beyond RNA metabolism and suggest DDX6 is a therapeutic target for inflammatory diseases.


Assuntos
RNA Helicases DEAD-box , NF-kappa B , Regulação da Expressão Gênica , Interleucina-6/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Transdução de Sinais , Fator de Transcrição RelA/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , RNA Helicases DEAD-box/metabolismo
10.
Toxicology ; 502: 153729, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38242491

RESUMO

Acrylamide (ACR), a toxin present in fried and baked carbohydrate-rich foods, is known to cause liver and kidney damage. This study aimed to investigate the mechanisms of oxidative stress, inflammation, and apoptosis that contribute to liver and kidney damage induced by chronic administration of ACR. Additionally, the effectiveness of vitamin E in mitigating these toxic effects was examined. The study initially involved dividing 40 pregnant rats into four groups. After lactation, the research continued with male offspring rats from each group. The offspring rats were divided into Control, Vitamin E, ACR, and ACR + Vitamin E groups. Following ACR administration, liver and kidney function tests were performed on serum samples. Biochemical analyses, evaluation of inflammation markers, histopathological examination, and assessment of protein levels of Akt/IκBα/NF-κB, Bax, Bcl-xL, and Caspase-9 were conducted on liver and kidney tissues. The analysis demonstrated that ACR adversely affected liver and kidney function, resulting in oxidative stress, increased inflammation, and elevated apoptotic markers. Conversely, administration of vitamin E positively impacted these parameters, restoring them to control levels. Based on the results, the mechanism of ACR's action on oxidative stress and inflammation-induced liver and kidney damage may be associated with the activation of apoptotic markers such as Bax and Caspase-9, as well as the Akt/IκBα/NF-κB signaling pathway. Consequently, the protective properties of vitamin E establish it as an essential vitamin for the prevention or mitigation of various ACR-induced damages.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , NF-kappa B , Feminino , Ratos , Masculino , Animais , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Inibidor de NF-kappaB alfa/farmacologia , Proteína X Associada a bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Caspase 9/metabolismo , Vitamina E/farmacologia , Vitamina E/uso terapêutico , Acrilamida/toxicidade , Transdução de Sinais , Estresse Oxidativo , Inflamação , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Desenvolvimento Fetal , Apoptose , Antioxidantes/farmacologia
11.
Int Heart J ; 65(1): 135-145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38296567

RESUMO

Atherosclerosis may be caused or developed by an immune response and antioxidation imbalance. MicroRNA-375 (miR-375) or G-protein-coupled receptor 39 (GPR39) is involved in vascular endothelial cell injury, but their role in atherosclerosis is unknown. This experiment aimed to determine the action of the miR-375/GPR39 axis in atherosclerosis.Human aortic endothelial cells (HAECs) were treated with 10 ng/mL of oxidised low-density lipoprotein (ox-LDL) for 24 hours to induce HAEC injury, which was treated by the miR-375 inhibitor, GPR39 inhibitor, or agonist. High-fat diet (HFD) -induced ApoE-/- mice were made as an atherosclerosis model for miR-375 inhibitor treatment. Cell Counting Kit-8 was applied to detect HAEC viability. HAEC apoptosis and ROS levels were measured using flow cytometry. Vascular histopathology and the GPR39 expression were detected using hematoxylin-eosin and immunohistochemistry. The expressions of interleukin (IL) -6, IL-1ß, and tumour necrosis factor-α (TNF-α) were assessed using an enzyme-linked immunosorbent assay. The miR-375, GPR39, NOX-4, and p-IκBα/IκBα levels were measured using quantitative reverse transcription polymerase chain reaction or western blot.MiR-375 and GPR39 levels increased and decreased in ox-LDL-treated HAECs, respectively. The miR-375 inhibitor or GPR39 agonist promoted cell viability and inhibited apoptosis in ox-LDL-induced HAEC injury. The miR-375 inhibitor also significantly downregulated the IL-6, IL-1ß, TNF-α, p-IκBα/IκBα, ROS, and NOX-4 expressions to alleviate oxidative stress and inflammation, which were reversed by the GPR39 inhibitor. An in vivo experiment proved that the miR-375 inhibitor upregulated the GPR39 expression and improved inflammation, oxidative stress, and endothelial cell damage associated with atherosclerosis.The miR-375 inhibitor improved inflammation, oxidative stress, and cell damage in ox-LDL-induced HAECs and HFD-induced ApoE-/- mice by promoting the GPR39 expression, which provided a new theoretical basis for the clinical treatment of atherosclerosis.


Assuntos
Aterosclerose , MicroRNAs , Humanos , Animais , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Aterosclerose/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Lipoproteínas LDL/farmacologia , Lipoproteínas LDL/metabolismo , Estresse Oxidativo , Inflamação/metabolismo , Apolipoproteínas E , Apoptose
12.
Biol Trace Elem Res ; 202(1): 258-267, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36988786

RESUMO

The exact molecular mechanism of arsenic-induced liver injury has not been fully elucidated. The aim of the study was to investigate the potential mechanism of NaAsO2-induced cytotoxicity in BRL-3A cells and to provide a basis for the mechanism of arsenic poisoning. BRL-3A cells were treated with different doses of NaAsO2, DNMT1 inhibitor (DC_517), TLR4 inhibitor (TAK-242), and transfection of SOCS1 plasmid. Cell activity, apoptosis, inflammation and protein expression of DNMT1, SOCS1, TLR4, MyD88, and NF-κB were detected by CCK8 assay, Annexin V-FITC and Western blot, respectively. With increasing NaAsO2 doses, BAX and caspase-3 expression increased, Bcl-2 expression decreased, pro-inflammatory factors TNF-α, IL-1ß, and IL-6 increased, and cell activity decreased causing increased apoptosis. When BRL-3A was intervened with 10, and 20 µmol/L NaAsO2, DNMT1 expression was elevated, SOCS1 expression was decreased, and TLR4, MyD88, p-IκBα/IκBα, and p-p65/p65 expression were elevated. After the combination of NaAsO2 and DC_517, compared to the NaAsO2 group, apoptosis and inflammation were attenuated, SOCS1 expression was elevated and TLR4, MyD88, p-IκBα/IκBα and p-p65/p65 expression was decreased. Apoptosis and inflammation were attenuated after co-treatment of SOCS1 high expression with NaAsO2 compared to the NaAsO2 group. In addition, TLR4, MyD88, p-IκBα/IκBα and p-p65/p65 expression was reduced. When NaAsO2 and TAK-242 were combined, apoptosis and inflammation were attenuated. Besides MyD88, p-IκBα/IκBα and p-p65/p65 expression was reduced compared to the NaAsO2 group. We found that NaAsO2 induce apoptosis and inflammation in BLR-3A cells, which may be related to inhibit SOCS1 through regulation of DNMT1 and thus activating the TLR4/MyD88/NF-κB signaling pathway.


Assuntos
Fator 88 de Diferenciação Mieloide , NF-kappa B , Humanos , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Transdução de Sinais , Apoptose , Proteínas Supressoras da Sinalização de Citocina , Inflamação/induzido quimicamente , Proteína 1 Supressora da Sinalização de Citocina/genética , Proteína 1 Supressora da Sinalização de Citocina/metabolismo
13.
Int Immunopharmacol ; 126: 111287, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38041956

RESUMO

Loss of retinal ganglion cells (RGCs) is a primary cause of visual impairment in glaucoma, the pathological process is closely related to neuroinflammation and apoptosis. B-cell activating factor (BAFF) is a fundamental survival factor mainly expressed in the B cell lineage. Evidence suggests its neuroprotective effect, but the expression and role in the retina have not yet been investigated. In this study, we adopt optic nerve crush (ONC) as an in vivo model and oxygen-glucose deprivation/reoxygenation (OGD/R) of RGCs as an in vitro model to investigate the expression and function of BAFF. We found that BAFF and its receptors were abundantly expressed in the retina and BAFF inhibition exacerbated the caspase 3-mediated RGCs apoptosis, glial cell activation and pro-inflammatory cytokines expression, which may be caused by the activation of the NF-κB pathway in vivo. In addition, we found that BAFF treatment could alleviate RGCs apoptosis, pro-inflammatory cytokines expression and NF-κB pathway activation, which could be reversed the effect by blockade of the NF-κB pathway in vitro. Meanwhile, we found that microglia induced to overexpress BAFF in the inflammatory microenvironment in a time-dependent manner. Taken together, our results indicated that BAFF deficiency promoted RGCs apoptosis and neuroinflammation through activation of NF-κB pathway in ONC retinas, suggesting that BAFF may serve as a promising therapeutic target for the treatment of glaucoma.


Assuntos
Glaucoma , Células Ganglionares da Retina , Humanos , Células Ganglionares da Retina/metabolismo , NF-kappa B/metabolismo , Fator Ativador de Células B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Doenças Neuroinflamatórias , Nervo Óptico/patologia , Apoptose
14.
Chem Biol Interact ; 387: 110822, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056805

RESUMO

Rheumatoid arthritis (RA) is a highly prevalent and chronic inflammatory synovial joint disease manifested by hyperplasia and continuous inflammation. Curcumin (Cur) has been studied for alleviating RA. However, poor stability and oral bioavailability restrict its therapeutic value. Bisdemethoxycurcumin (BDMC), a curcumin (Cur) derivative, exerts better stability and oral bioavailability than Cur. However, the efficacy of BDMC on RA has not been fully clarified. The aim of the study was to investigate the therapeutic effects and underlying mechanisms of BDMC on RA. The in-vivo anti-arthritic activity of BDMC was determined via adjuvant-induced arthritis (AIA) rat model. Paw swelling, body weight, arthritic index, and histopathological assessments were performed. RAW264.7 cell was stimulated by lipopolysaccharides (LPS) in vitro. The cell viability were determined by CCK8 assay, while the migration ability was determined using cell wound healing and transwell assays. Furthermore, in-vivo and in-vitro levels of pro-inflammatory cytokines (TNF-α, IL-1ß and IL-6) were assayed by ELISA, and that of IκBα, p-NF-κB, NF-κB, and COX-2 were assessed via Western blot or immunofluorescence. In AIA rat model, it suggested a higher anti-arthritic activity of BDMC than Cur, including amelioration of swelling in hind paws, reduced arthritic index, and alleviated histopathological injury in rats. Furthermore, BDMC also substantially decreased the levels of the aforementioned pro-inflammatory cytokines in both in-vivo and in-vitro, inhibited the IκBα degradation, down-regulated the COX-2 levels and p-NF-κB/NF-κB ratio in AIA rats and LPS-stimulated RAW264.7 cells. Additionally, BDMC showed an inhibitory effect on the migration of LPS-stimulated RAW264.7 cells. BDMC could effectively ameliorate RA by suppressing inflammatory reactions and inhibiting macrophage migration, more potentially than Cur.


Assuntos
Artrite Experimental , Artrite Reumatoide , Curcumina , Camundongos , Ratos , Animais , NF-kappa B/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Inibidor de NF-kappaB alfa/metabolismo , Lipopolissacarídeos/toxicidade , Ciclo-Oxigenase 2 , Inflamação/tratamento farmacológico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/patologia , Citocinas/metabolismo , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Artrite Experimental/metabolismo , Células RAW 264.7 , Diarileptanoides/farmacologia , Diarileptanoides/uso terapêutico
15.
Curr Eye Res ; 49(1): 62-72, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37768316

RESUMO

PURPOSE: The dysregulation of NF-κB signaling activity plays an important role in the pathogenesis of diabetic retinopathy (DR). This study explored the association between NEDD4L and IκBα in DR. METHODS: The rat model of diabetes was established and altered retinal vascular permeability in these rats was examined through an Evans blue dye assay. A range of glucose concentrations were used to treat retinal vascular endothelial cells (RVECs). The cells viability and apoptosis were assessed through MTT and flow cytometry, while shifts in cell permeability were examined by transendothelial resistance (TEER) and FITC dextran assay. The interaction of NEDD4L and IκBα was tested by Co-IP, while mRNA and protein levels were assessed via qPCR and Western blotting, respectively. RESULTS: High glucose suppressed proliferative activity of RVECs, and promoted apoptosis and the protein level of NEDD4L and NF-κB p65, but decreased IκBα. NEDD4L knockdown reversed the changes in inflammation, oxidative stress, and permeability in RVECs exposed to high glucose. Similarly, NEDD4L silencing reverted observed TEER decreases, increased monolayer permeability to FITC dextran, and ZO-1 and Claudin-5 downregulation in response to high glucose. Conversely, the impact of NEDD4L overexpression was reversed by the NF-κB inhibitor PDTC treatment. NEDD4L induced the ubiquitination of IκBα in an IKK-2-dependent manner. Moreover, siNEDD4L treatment alleviated the symptoms of DR through the inactivation of NF-κB signaling in vivo. CONCLUSIONS: NEDD4L could enhance inflammation, oxidative stress, and permeability in the retinal vascular endothelium by facilitating the ubiquitination of IκBα in an IKK-2-dependent manner. Our results support a role for NEDD4L in the pathogenesis of DR.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Animais , Ratos , Diabetes Mellitus/metabolismo , Retinopatia Diabética/metabolismo , Células Endoteliais/metabolismo , Glucose/farmacologia , Inflamação/metabolismo , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Ubiquitinação
16.
Pestic Biochem Physiol ; 197: 105700, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072555

RESUMO

Terbuthylazine (TBA), a triazine herbicide, is extensively employed in agriculture for its wide range of effectiveness. However, prolonged utilization of TBA can pose a potential hazard to animals and human health. Here, a total of 180 broiler chickens (Gallus gallus) were stochastically assigned to three groups (control group, 0.4 mg/kg TBA group, and 4 mg/kg TBA group) for investigating the impact of TBA on cardiotoxicity. The results revealed that TBA exposure resulted in pathological alterations in the myocardium. Moreover, TBA exposure activated cGAS-STING pathway and markedly elevated the mRNA and protein expression levels of innate immune response (cGAS, STING, TBK1, and IRF3) in myocardium. Additionally, NF-κB signal was also activated under TBA exposure, which was characterized by the increasing mRNA expression levels of NF-κB, IKKα and the protein expression levels of p-NF-κB/NF-κB, IKKα, p-IκBα/IκBα in the TBA treatment groups. Meanwhile, the expression of pro-inflammatory cytokines (TNF-α and IL-1ß) were also significantly increased. In summary, our findings suggested that cGAS-STING/NF-κB pathway functionated in the innate immune response and inflammation in myocardium brought on by TBA exposure, which provided new insights into the TBA toxicology.


Assuntos
Galinhas , NF-kappa B , Animais , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Galinhas/metabolismo , Transdução de Sinais , Inibidor de NF-kappaB alfa/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Imunidade Inata , Triazinas , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Inflamação/induzido quimicamente , Miocárdio/metabolismo , RNA Mensageiro
17.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139099

RESUMO

Pathological cardiac remodeling is associated with cardiovascular disease and can lead to heart failure. Nuclear factor-kappa B (NF-κB) is upregulated in the hypertrophic heart. Moreover, the expression of the G-protein-coupled receptor kinase 2 (GRK2) is increased and linked to the progression of heart failure. The inhibitory effects of paroxetine on GRK2 have been established. However, its protective effect on IκBα/NFκB signaling has not been elucidated. This study investigated the cardioprotective effect of paroxetine in an animal model of cardiac hypertrophy (CH), focusing on its effect on GRK2-mediated NF-κB-regulated expression of prohypertrophic and profibrotic genes. Wistar albino rats were administered normal saline, paroxetine, or fluoxetine, followed by isoproterenol to induce CH. The cardioprotective effects of the treatments were determined by assessing cardiac injury, inflammatory biomarker levels, histopathological changes, and hypertrophic and fibrotic genes in cardiomyocytes. Paroxetine pre-treatment significantly decreased the HW/BW ratio (p < 0.001), and the expression of prohypertrophic and profibrotic genes Troponin-I (p < 0.001), BNP (p < 0.01), ANP (p < 0.001), hydroxyproline (p < 0.05), TGF-ß1 (p < 0.05), and αSMA (p < 0.01) as well as inflammatory markers. It also markedly decreased pIκBα, NFκB(p105) subunit expression (p < 0.05) and phosphorylation. The findings suggest that paroxetine prevents pathological cardiac remodeling by inhibiting the GRK2-mediated IκBα/NF-κB signaling pathway.


Assuntos
Insuficiência Cardíaca , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Paroxetina/farmacologia , Paroxetina/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Isoproterenol/toxicidade , Quinase 2 de Receptor Acoplado a Proteína G/metabolismo , Remodelação Ventricular , Miócitos Cardíacos/metabolismo , Cardiomegalia/induzido quimicamente , Cardiomegalia/tratamento farmacológico , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Ratos Wistar , Expressão Gênica
18.
Zhongguo Zhong Yao Za Zhi ; 48(21): 5871-5880, 2023 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-38114183

RESUMO

This study investigated the neuroprotective effects and underlying mechanism of Liujing Toutong Tablets(LJTT) on a rat model of permanent middle cerebral artery occlusion(pMCAO). The pMCAO model was established using the suture method. Eighty-four male SPF-grade SD rats were randomly divided into a sham operation group, a model group, a nimodipine group(0.020 g·kg~(-1)), and high-, medium-, and low-dose LJTT groups(2.8, 1.4, and 0.7 g·kg~(-1)). The Longa score, adhesive removal test and laser speckle contrast imaging technique were used to evaluate the degree of neurological functional impairment and changes in local cerebral blood flow. The survival and mortality of rats in each group were recorded daily. After seven days of continuous administration following the model induction, the rats in each group were euthanized, and brain tissue and blood samples were collected for corresponding parameter measurements. Nissl staining was used to examine pathological changes in brain tissue neurons. The levels of tumor necrosis factor-alpha(TNF-α), interleukin-6(IL-6), IL-1ß, vascular endothelial growth factor(VEGF), calcitonin gene-related peptide(CGRP), beta-endorphin(ß-EP), and endogenous nitric oxide(NO) in rat serum were measured using specific assay kits. The entropy weight method was used to analyze the weights of various indicators. The protein expression levels of nuclear factor kappa-B(NF-κB), inhibitor kappaB alpha(IκBα), phosphorylated IκBα(p-IκBα), and phosphorylated inhibitor of NF-κB kinase alpha(p-IKKα) in brain tissue were determined using Western blot. Immunohistochemistry was used to detect the protein expression of chemokine-like factor 1(CKLF1) and C-C chemokine receptor 5(CCR5) in rat brain tissue. Compared with the sham operation group, the model group showed significantly higher neurological functional impairment scores, prolonged adhesive removal time, decreased cerebral blood flow, increased neuronal damage, reduced survival rate, significantly increased levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in serum, significantly decreased levels of VEGF and ß-EP, significantly increased expression levels of NF-κB p65, p-IκBα/IκBα, and p-IKKα in rat brain tissue, and significantly upregulated protein expression of CKLF1 and CCR5. Compared with the model group, the high-dose LJTT group significantly improved the neurological functional score of pMCAO rats after oral administration for 7 days. LJTT at all doses significantly reduced adhesive removal time and restored cerebral blood flow. The high-and medium-dose LJTT groups significantly improved neuronal damage. The LJTT groups at all doses showed reduced levels of TNF-α, IL-1ß, IL-6, CGRP, and NO in rat serum, increased VEGF and ß-EP levels, and significantly decreased expression levels of NF-κB p65, p-IκBα/IκBα, p-IKKα, and CCR5 protein in rat brain tissue. The entropy weight analysis revealed that CGRP and ß-EP were significantly affected during the model induction, and LJTT exhibited a strong effect in reducing the release of inflammatory factors such as TNF-α and IL-1ß. LJTT may exert a neuroprotective effect on rats with permanent cerebral ischemia by reducing neuroinflammatory damage, and its mechanism may be related to the inhibition of the NF-κB signaling pathway and the regulation of the CKLF1/CCR5 axis. Additionally, LJTT may exert certain analgesic effects by reducing CGRP and NO levels and increasing ß-EP levels.


Assuntos
Isquemia Encefálica , NF-kappa B , Ratos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/genética , Inibidor de NF-kappaB alfa/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Quinase I-kappa B/metabolismo , Quinase I-kappa B/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/farmacologia , Interleucina-6/genética , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Ratos Sprague-Dawley , Transdução de Sinais , Isquemia Encefálica/tratamento farmacológico , Comprimidos
19.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 39(11): 1003-1009, 2023.
Artigo em Chinês | MEDLINE | ID: mdl-37980552

RESUMO

Objective To observe the effect of Mongolian medicine Zhenbao Pill (Eridon Uril, EU) on inflammation and apoptosis of HT22 mouse hippocampal neurons cells under oxygen glucose deprivation/reoxygenation (OGD/R), and to explore its potential mechanism. Methods Three-gas incubator and sugar-free anaerobic medium were used to construct a model of OGD/R-injured HT22 cells. OGD/R model cells were treated with EU (10, 20 and 40 µg/mL), and the optimal dose of 20 µg/mL was screened. The OGD/R injured cells treated with nicotinamide (NAM), inhibitor of SIRT1, combined with EU were set as EU combined with NAM group, and the OGD /R injured cells treated with dimethyl sulfoxide (DMSO) combined with EU were set as EU combined with DMSO group. CCK-8 assay and ELISA were used to detect cell activity and LDH leakage rate, respectively. Detection of the mRNA expression of tumor necrosis factor α (TNF-α), Interleukin 6 (IL-6), and IL-1ß was detected by real time fluorescence quantitative PCR in HT22 cells. The apoptosis was detected by flow cytometry. The protein expression of B-cell lymphoma 2 (Bcl2), Bcl2 related X protein (BAX), SIRT1, inhibitor of nuclear factor κB α (IκBα), and phosphorylated nuclear factor κB (p-NF-κB) were detected by Western blot analysis. Results Compared to the control group, HT22 cells in the OGD/R group showed significantly lower activity and higher LDH leakage rate, while (20, 40)µg/mL EU treatment significantly increased cell activity and lowered LDH leakage rate, with 20 µg/mL EU being the optimal dose. The mRNA expression of TNF-α, IL-6 and IL-1ß and the apoptosis rate of the cells in the OGD/R group were significantly higher than those in the control group. The protein levels of SIRT1, IκBα, and Bcl2 were significantly lower than that in the control group, while the protein levels of p-NF-κB, BAX were significantly higher than that in the control group. EU significantly inhibited the secretion of TNF-α, IL-6, IL-1ß and apoptosis in HT22 cells induced by OGD/R. Conclusion EU significantly reduces the inflammatory response and apoptosis in OGD/R-induced mouse hippocampal neurons, which is associated with the activation of SIRT1/NF-κB signal pathway.


Assuntos
Interleucina-6 , NF-kappa B , Camundongos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Proteína X Associada a bcl-2/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Dimetil Sulfóxido/farmacologia , Medicina Tradicional da Mongólia , Hipocampo/metabolismo , Oxigênio/metabolismo , Apoptose , Neurônios/metabolismo , Inflamação/metabolismo , RNA Mensageiro/metabolismo
20.
Zhongguo Zhong Yao Za Zhi ; 48(15): 4164-4172, 2023 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-37802785

RESUMO

The study aims to observe the effects and explore the mechanisms of Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination in the treatment of the inflammatory response of mice with atherosclerosis(AS) via the Toll-like receptor 4(TLR4)/myeloid differentiation primary response protein 88(MyD88)/nuclear factor-κB(NF-κB) signaling pathway. Male ApoE~(-/-) mice were randomly assigned into a model group, a Buyang Huanwu Decoction group, an Astragali Radix-Angelicae Sinensis Radix combination group, and an atorvastatin group, and male C57BL/6J mice of the same weeks old were used as the control group. Other groups except the control group were given high-fat diets for 12 weeks to establish the AS model, and drugs were administrated by gavage. Aortic intimal hyperplasia thickness, blood lipid level, plasma inflammatory cytokine levels, M1/M2 macrophage markers, and expression levels of proteins in TLR4/MyD88/NF-κB pathway in the vessel wall were measured to evaluate the effects of drugs on AS lesions and inflammatory responses. The results showed that the AS model was successfully established with the ApoE~(-/-) mice fed with high-fat diets. Compared with the control group, the model group showed elevated plasma total cholesterol(TC), triglyceride(TG), and low-density lipoprotein cholesterol(LDL-c) levels(P<0.05), thickened intima(P<0.01), and increased plasma tumor necrosis factor-α(TNF-α) and interleukin-6(IL-6) levels(P<0.01). Moreover, the model group showed increased expression of vascular cell adhesion molecule-1(VCAM-1) and inducible nitric oxide synthase(iNOS)(P<0.01), inhibited expression of endothelial nitric oxide synthase(eNOS) and cluster of differentiation 206(CD206)(P<0.01), and up-regulated mRNA and protein levels of TLR4, MyD88, NF-κB inhibitor alpha(IκBα), and NF-κB in the vessel wall(P<0.05). Compared with the model group, Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination lowered the plasma TC and LDL-c levels(P<0.01), alleviated the intimal hyperplasia(P<0.01), and reduced the plasma TNF-α and IL-6 levels(P<0.05). Moreover, the two interventions promoted the expression of eNOS and CD206(P<0.05), inhibited the expression of VCAM-1 and iNOS(P<0.01), and down-regulated the mRNA and protein levels of TLR4, MyD88, IκBα, and NF-κB(P<0.05) in the vessel wall. This study indicated that Buyang Huanwu Decoction and Astragali Radix-Angelicae Sinensis Radix combination could delay the progression of AS, inhibit the polarization of vascular wall macrophages toward M1 type, and attenuate vascular inflammatory response by inhibiting the activation of TLR4/MyD88/NF-κB signaling pathway in the vascular wall. Astragali Radix and Angelicae Sinensis Radix were the main pharmacological substances in Buyang Huanwu Decoction for alleviating the AS vascular inflammatory response.


Assuntos
Aterosclerose , NF-kappa B , Camundongos , Masculino , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Molécula 1 de Adesão de Célula Vascular/metabolismo , LDL-Colesterol , Hiperplasia , Camundongos Endogâmicos C57BL , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Apolipoproteínas E/metabolismo , Apolipoproteínas E/uso terapêutico , RNA Mensageiro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...